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On dynamical properties in a Moyal quantization 
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Germany 
$ lnstitut Fh Thcoretische Physk der lustus-Liebig-UniversitaS D 6300 Giessen, Federal 
Republic of Germany 

Received 26 April 1993 

Abstract Dynamical properties of classical Hamiltonian systems and theu Moyal quanlizations 
are related. 

1. Introduction 

Moyal's quantization concept [ l ]  has been the focus of renewed interest in the past two 
decades for mainly two reasons. One is a general revival of the phase-space picture of 
quantum mechanics as initiated by Weyl and Wigner (see for example (2-171). Another 
one is the rapidly developing theory of deformation algebras, for which Moyal quantization 
has become a standard example (see [IS-311). This was first elucidated in a fundamental 
paper by Bayen et nl [IS] which supports arguments by which Moyal's quantization concept 
seems to be the most natural way to pass from quantum to classical mechanics (see also I321 
ch 8.3g). This point of view will be emphasized by the examples presented here. We shall 
begin with a short review of the general concept. For reasons explained in detail in [33] we 
prefer a regular Hilbert space, i.e. a phase-space representation of a Moyal quantization. 

2. Hilbert space (phase-space) representation of a Moyal quantization 

Let a ( p .  4). ( p ,  4) E RZN, be a real- or complex-valued function (observable) on a 2N- 
dimensional phase space, and let R ( a ( p , q ) )  and R X ( a ( p , q ) )  denote its left- and right- 
regular representation in a Moyal quantization on a state space LZ(RzN) of functions f (p ,  4). 
That is, if f ( x ,  y) denotes the Fourier transform of f ( p .  q )  and 'oh' the Moyal product 
then [33] 

W ( P 3  4))f(P.  4 )  d P ,  4 )  Oh f(P. 4)  

= ( 1 / 2 ~ ) ~ /  f i x , y ) a ( p + h y / 2 , 9  -hx/2)exp[i(xp+yq)ld(x,y) 

= ( l / 2 r ) N 1 2 N  ~ ( ~ , ~ ) ~ ( p - h ~ / 2 , q + f i x / 2 ) e x p [ i ( x ~ + y q ) l d ( x ,  Y) .  

RZN 

R X ( 4 P ,  4 ) ) f ( P .  4) = f(P, 4)  oil n(p ,  4) 
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This may be symbolically written as 

G Braunss and D Rompj 

R(a(p. 4)) = a ( p  - ihaq/2, + ihap/2) 

R x ( a ( p ,  9)) = a b  t %a$, 9 - ihap/2) 

where ap = grad,, a, = gradq. Let h ( p ,  q )  = p2/2 + V(q) be a Hamilton function. Then 
the corresponding time evolution operators of the Moyal quantized system are exp(it&), 
f E R, where 

ish = i[R(h(p. q))-Rx(h(p, q)) ]  = hga,+i(V(q+ihap/2)-V(q-iha,/2)). 

Expanding the last expression in a formal Taylor series yields 

It is easily seen that 

lim(i&/h) = paq - (aqV(q))ap = Lh (2) 
fi-0 

is the Liouville operator, that is the operator which generates the time evolution operators 
exp(fLh), f E R, of the classical system. To compare classical with quantum time evolution 
let us introduce the operators ai = exp(iI&/h) and PI = exp(fLh), I E R. It follows from 
(2) that 

a,( A o ~ B o  *...) = (a,A)oh(a,B)o ,,... -+ p , ( A . B .  ...) = ( p , A ) . ( P 1 B ) .  ... forh -+ 0. 

If V ( q )  is, at most, quadratic then i&/h = L h  and therefore at = p, for all f E R. If 
V(q) is not at most quadratic then it nevertheless can happen that a ,a (p ,  q )  = pla(p,  q )  
for all I E R and non-trivial a ( p ,  q )  # h ( p ,  4). We will show below that this is the case 
for V(q) = k / q 2 , g  E R. where k is arbitrary real. Apart from such probably rare cases 
there are, however, numerous examples in which a&, q )  approaches p,a(p, q )  if either 
f -+ CO or if the energy E -+ cc (or if some other parameter tends to some fixed finite or 
infinite value), provided a(p. q )  satisfies certain growth conditions. In any of these cases 
one may consider the Liouville operator L h  as a first approximation of the operator i&jh. 
In some cases this can be expressed by a suitably adapted version [34] of the Duhamel 
formula whose first-order approximation reads here as 

1 

ar(a(p. 4) )  = pr(o(p, 4)) + (h2/4!) ~~- , [a :v(9)a ;~~(a(p .  4))ld.s + (3) 

However, contraly to a certain folklore, approximations of this kind do not always work, 
as will be demonstrated by the example V(q) = k / q 2  (see appendix A.l). Another method 
is to use a Taylor expansion of a, = exp(ir&/h) in powers of f  combined with analytic 
continuation. Although rigorous statements on the respective convergence are not available, 
the invariance of the energy or the ( p ,  9)-commutator under time translations provides a 
sufficiently good estimate of the quality of such an approximation. We have applied this 
method to the (one-dimensional) potential V(q) = q4/4 by using a Marhematica program 
generally developed for Moyal quantization. The results are presented in appendix A.2. 
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Both the methods just described will yield a global approximation for such systems only 
when B,q is periodic or at least stays bounded. For escaping trajectories it remains to 
study the asymptotic properties in the sense explained above. This will be demonstrated in 
section 2. The examples given there are typical for a large class of similiar systems with 
an arbitrary finite number of degrees of freedom. 

Classical and Moyal time evolution can .be related in a very compact form, which 
exhibits some interesting common global features of both evolutions. Let a ( p i  q, t )  
A a ( p + q )  and A(p,q,t) = w ( p , q ) .  Then 

(8, - i&/h)A(P,q, t )  = 0 

and 

(a, - Lh)a(p, q,  t )  = 0. 

Setting 

h2ck := isk/h - L k  = (i/h)[V(q + ikap/2) - v(q - i k a ~ 2 )  - ifia,v(q)a,l 

the first of the two preceding equations can be written as 

(a, - Lk)A(P, q,  t )  fiZCkA(P, 9.1). 

So if Gh(p, q.  t)  is a Green function of the last equation, that is if 

(at - Lh)Gh(Pi q,  f) S ( f ) S ( P ) G ( q )  (4) 

then ('*' denotes convolution) 

A(p,q,t) = Ao(p,q,t)+h*(Gk *(ChA))(P,q,t) (5) 

where A&, q ,  t )  is an arbitrary function satisfying (at - Lh)Ao(p. q. I) = 0. By choosing 
Ao(p, 4. t) = 4 p ,  q ,  

(6) 

Thus A(p,q,t) -+ a ( p , q , t )  .for h + 0 as required. Writing (KkA)(p,q,t) = 
(Gk $ (ChA))(p,q, t) we finally obtain 

we get 

A ( P , ~ .  t )  = a @ ,  4. t )  -t fr*(Gk * (CkA)) (P ,  4. t ) .  

(1 - hZKk)A(P, q,  t )  = U @ ,  4. t )  (7) 

and hence, assuming the existence of ( r  - h z K k ) - ' ,  

A ( ~ , q , t )  = (I - h Z K n ) - ' a ( p , q , f ) .  (8 )  

As to the inverse of I -A2Kh,  note the following. It is easily seen that ck is skew-symmetric, 
and the same is true for Kh if Gh is real-valued. Since we may, in addition, assume Kk to 
be densely defined and closed, it follows that in this case (I -h2Kk)-' is a bounded operator 
with a norm not exceeding 1. To what extent this last relation can be constructively used 
for calculating A(p, q.  t)  if a ( p .  q,  t) is known remains to be investigated. Apart from this 
relation (8) might be useful for statements on properties, which are commom to A(p,q. t) 
and a ( p ,  q. t). An important example is the following statement: 
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If n(p,  9, t) 
for A ( p , 9 , f )  =_ ~ ~ n ( p . 9 )  (and vice versa). 

It is obvious that relation (8) will also allow us to make statements concerning, for example, 
asymptotic, oscillatory or singular behaviour, which hold simultaneously for A ( p ,  q ,  I )  and 
a(p.  9, I). A Green function Gh(p. 9, r )  = ~ l p ‘ ( p ,  q ,  t ) + ~ y ’ ( p ,  9, t ) ,  where ~ l p ’  satisfies 
(a, - L h ) G r ’ ( p ,  9 ,  t )  = 0 but is otherwise arbitrary, can be constructed as follows. Let 
(6,(p,q))Ero be a sequence (of smooth functions) converging to 6(p,  q)  = 6(p)6(q), and 
let g6(p, q .  t )  = (sign(t) + co)fir6~(p, q)/2, where CO is an arbitrary (real) constant and 
PI = exp(tLh). Then, because of 3, sign(t)/2 = (1/x)3, limk+otan-’(t/k) = 6 ( t ) ,  

G Braunss and D Rompf 

&n(p ,q )  is periodic with respect to f, say modulo T ,  then the same is hue 

(81 - Lh)&(P, q +  t )  = 6( f )~%&(p ,  9 )  = 6 ( f ) & ( P ,  4 )  

and the right-hand side converges to S(r)6(p)6(q) for E + 0. Hence we may define 
G;’ = lim,,og, (in the distribution sense). If in particular h ( p ,  q )  = p z / 2  + V ( 9 ) .  where 
limI+o V ( q ) / l q l  = 0, then Lh&(p. (I) = 0 and therefore 8 , 6 , ( p ,  q )  + 6 ( p ,  q )  for E + 0. 
That is, in this case G t ’ ( p ,  9, f) = (sign(r) + co)6(p. q)/2. In all other cases GL”(p, q ,  t) 
could yield a complicated distribution. 

As to expectation values in a phase-state space the situation is as follows. Let u ( p .  q )  
and u ( p ,  9) be functions in LZ(WZN). Then (1, ii on U) = (U. U) where (., .) denotes the 
inner product [ 181. This extends to dual pairs of functions. That is, if f ( p .  9) is in the 
domain of R(a(p, 9 ) ) .  and if p = f oh 7, then 

(f3 R(a(p .  9 ) ) )  = / f(p,q)(a(p. 9 )  oh f 6% q))d(p, 4 )  
RZN 

= 12# 4 )  01, (f (/A 4 )  oh f(P.4)) d(p, 4 )  

That is, the Moyal quantum expectation value of R ( a ( p , q ) )  with respect to a state 
f ( p ,  q )  E LZ(RzN) is equal to the classical expectation value of a(p ,  q )  with respect to the 
‘density’ p = f ob 7. We note that p can be negative (this has been extensively studied 
in the context of Wignerfuncrions, see [2-171). The Heisenberg uncertainty principle is, 
by the way, reflected by the fact [33] that there is no sequence (f&O such that 
converges for E + 0 to a D i m  distribution or its derivatives. Therefore comparing (Y, and 
0,. or rather calculating (a, - p t ) a ( p , q )  for some observable a ( p , 9 ) ,  has finally to be 
translated into a phase-space expectation value. Since the a, share with the ,¶, the property 
of preserving the phase-space volume [18], (a ,o(p,q)) ,  = (or-, f, R(a(p,  q))or-, f) where 

oh 

p = f 7 holds. 

3. Examples 

In the first two examples, both with one degree of freedom, we shall discuss asymptotic 
properties of a, applied to suitable functions a(p ,  4). The basic idea is to make a canonical 
transformation (p ,  q )  -+ ( E ,  T ) ,  where 

E = W p ,  4) = P2/2 + V ( q )  (9) 



On dynamical properties in a Moyal quantization 4111 

and 

In this way the operator is,, becomes a differential operator which depends on E ,  T, a, and 
a,. Since T is the phase of an autonomous system, the limit r + M is equivalent to the 
limit t -+ 03 and hence allows us to make statements in the case of escaping trajectories 
i f f  tends to infinity. The limit E --t 03 will be of interest both for escaping and closed 
phase-space trajectories. 

3.1. The potential k / q 2 ,  0 # k E R 

Let E = h ( p ,  q )  = p 2 / 2  + k / q 2 ,  ( p .  q )  E B2, 0 # k E R. Then by (1) 

( i & / * W )  = (i/2fi)((p - ~ , / 2 ) ~  - ( p  + iha,/2)2)2~2 

= (iSh/h)(Zpq) = 2p2 + 4k /q2  = 4 E .  

Since 86 E = 0 it follows 

a,(@? = (1 + t(i&,/h)/l! + t2(i8h/~)2/2!)q2 = q2 + 2pq t  + 2EtZ  (11) 

(12) a , ( p q )  = p q  + 2Et2 .  

The classical solution of our Hamiltonian system follows from 

Thus 

8,q = Jq2 + 2p9 t  + 2Et2 

By comparing ( 1 1 )  with (14)  and (12) with (15) we conclude that cf,(q2) = ,9,(q2) and 
cu,(pq) = p , ( p q )  for all t E R. Thus the classical and the quantum phase-space expectation 
values with respect to a density p = f oh f coincide for the observables q2 and p q  for all 
times. Note that by (11) and (12) we can calculate the quantum time evolution for qb, 
(pq)", m and n arbitrary natural, and all observables which are obtained as Moyal products 
of these expressions. Using (1  I )  yields for example 

2 4  4 ut(q4) OK cft(q2) = Bt(q4) - 6kh t 14 , 

However, these coincidences between classical and quantum time evolution for non- 
quadratic Hamiltonians can be expected to be the rare exceptions. 

Let us now consider asymptotic properties. For E > 0 the potential k / q 2  classically 
yields only escaping trajectories regardless of the sign of k. By introducing the energy E 
and the phase r as new (canonical) variables we obtain 
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From the identity a,, = ( a E / a p ) a E  + ( a s / a p ) a ,  it then follows that 

ap/q = (1 + k / 2 E Z r Z ) - ' ( a r / r  - (1 - k / 2 E Z r Z ) a , / 2 E )  

= (-1/2~ + o ( E - ~ T - ~ ) ) ~ ,  + ( I / T  + O ( E - % - ~ ) ) ~ ~  

Using this relation, after a short calculation, we obtain from ( I )  

m 
= Lh + k ( l / E ?  + o ( E - ~ T - ~ ) )  x ( n  + l ) ( i / Z ) 2 " ( ( - l / 2 E  + o ( E - ~ T - ' ) ) ~ ,  

n=l 

+ ( l / T  + O(.!?-ZT-3))aE)2n+1. 

It thus finally follows that 

This statement can be generalized to a large class of potentials (with an arbitrary finite 
number of degrees of freedom) which vanish at infinity. We shall consider this elsewhere. 

3.2. The potential q4/4  

Let h ( p ,  q )  = p2/2 + q 4 / 4 ,  ( p .  q )  E R2. This system has classical solutions q ( f )  ,$9 = 
Acn(h(t + r)), p ( i )  
and 'cn' denotes the cosinus ampiifudinis (with module I/&). Since we have closed 
trajectories (Brp. &q),  the limit f + 03 makes no sense. It remains to consider whether 
at - j3, tends to zero if E tends to infinity. Inverting the Jacobian a ( p ,  q ) / a ( h ,  T )  we get 

j3,p = a ( B r q ) / a T  = a(p , ) /a t ,  t E R, T E R, where A = ( 4 ~ ) ' / ~  

a,, = i -4( - (q  + T P ) ~ ,  + ip&) a, = h-4(2p - rq3)a, + i q 3 a i ) .  

It follows with these equations (sn = m, dn = d m )  
i&/h = L h  - ( h 2 / 4 ) q a p 3  

= L h  - ( q h z / 4 ) [ - ( q  + rp)a, + P T 8 i I 3  
= L h  - (hZ/4)(4E)-"i4cn((4E)'!4))(-[(4E)'/4cn((4E)'/4r) 
+2rE'izsn((4E)1i4~)dn(4E)1i4~)]a, +8E3'Zsn((4E)'14r)dn((4E)1i4r)aE}3. 

It is not difficult to see that q a P 3 g ( E ,  T )  + 0 for E + 0 if Ig(E, T ) [  increases with respect 
to E less than and fails to do so otherwise. Consequently, 

lim (al - j3 , )g(E,  T )  = 0 
E-m 15-m 

only if lim Ig(E,  5 )  E-5i41 = 0. 

In particular 

lim (ar - B r ) ( q m p n )  = 0 if m + 2n c 5 .  
E-WX 
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3.3. Constants of motion: periodic potentials, Toda potential 

We conclude with two examples which demonshllte that classical constants of motion (first 
integrals) do not need to have quantum counterparts and vice versa. 

3.3.1. Periodic potentials. Let h @ ,  q) = p2/2 + V ( q ) ,  (p, q) E RZN, where V ( q  2c z) = 
V ( q )  for some constant vector z E C N .  Let k E Z, and let x ( k , p )  = exp[2ik(zp)/fi]. 
Then 

& x ( ~ P )  = ( V ( q  + ifia,) - V ( q  - iha,))x(k.  P) 

= ( V ( q - k z )  - V ( q + k z ) ) x ( k , p )  = O ,  

Hence a ,x(k,p)  = x(k ,p)  for all t E R. This extends to arbitrary elements of the linear 
space spanned by the x ( k ,  p), k E Z. However, Lhx(k,p) # 0 fork # 0. Thus the x ( k ,  p), 
k E Z (and their linear combinations) are constants of motion quantum mechanically but 
not classically. This example has an analogue in the Heisenberg picture. It is based on 
the following, easy to prove statement (omitting any finesse on domiins of operators). For 
any two operators A, B satisfying [A, 51 = i l ,  [exp(pA),exp(2iknB/p)] = 0 for arbitrary 
complex p # 0 and arbitrary k E Z holds. Then let A = P ,  B = Q where ( P .  Q) is a 
Heisenberg couple. The property V(Qi2ni /p)  = V ( Q )  determines a symmetry group with 
inner automorphismso : f (Q)  + Sf(Q)S-l = f ( Q + k i / @ )  where S = exp(2niPjhp). 
It is easily seen that S commutes with the corresponding Hamiltonian in the Heisenberg 
picture. Now, classically by V ( q  i 2ni/p) = V ( q )  we also have a symmetry group. The 
corresponding automorphisms are 6 = exp(2rriaq/p), and, they leave the Hamilton function 
h ( p ,  q)  invariant. However, since these automorphisms are outer, there i s  no function (= 
constant of motion) s ( p ,  q)  such that o a ( p ,  q )  = s ( p .  q)a(p ,  4). a ( p ,  q)  $ 0  or 1. 

3.3.2. Toda potential. Let h@, q) = p2/2 + V ( q ) ,  @, q) E Et6, where 

V ( q )  = exp(ql - qd + exp(q2 - 43) + exp(q3 - 41). 

It is known [35] that h @ ,  q) and the following expressions are in involution (meaning that 
their mutual Poisson brackets vanish): 

where 

C(P. q) (P; + 2 ~ , t 1 ~ j t z ) [ e x ~ ( q j  - qj+l) -exp(qj+l -qj+2)1. 
jmod3 

Thus the Moyal operators corresponding to h @ ,  q), a@. q) and b@, q) are not all in 
involution in contrast to the classical case. This raises the question of whether there exists 
a ‘complete’ set of mutually commuting Moyal operators at all. 
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Appendix 

The numerical calculations presented in the following are based either on a Taylor series 
expansion of a, = exp(it&,/h) in powers o f t  combined with analytic continuation or on 
the modified Duhamel formula (3). As to the first method it means that we start with a 
Taylor expansion at," = xy=B(it&/h)Jq/j! of 0 1 ~  for some interval [O, t i )  and an energy 
E. A value for ti can be fixed as follows. Let AE(t, n )  = h(a , , ,p ,  a,,,q) be the deviation 
of the energy from the initial energy E = h ( p ,  q )  caused by our approximation. Allowing 
a certain error AE(t, n )  we define tl > 0 as the bound for t  in accordance with this error. 
We proceed then by analytic continuation. That is, we calculate f f , , a ( p , q )  (if a ( p , q )  is 
the observable in which we are interested) on [tI.t2) for initial values pi = ~ r , , , ~ p  and 
91 = ff,,,,9 (where p and 9 were the intial values at t = 0). 12 could then be fixed in the 
same way as t, was. By periodicity with respect to t we can expect to get in this fashion 
a finite covering of the interval of periodicity. The final result can then be checked by 
calculating the maximal energy deviation on the global intwval using the approximations 
obtained by the preceding calculations. Although this scheme lacks (due to considerable 
technical difficulties) rigour as concerns convergence, we think that the estimates based on 
the energy deviation will suffice. 

A.1. The potential k / q 2  

Writing ( 3 )  as 

fft(a(p,9)) = alz'(a(p, 9 ) )  + 0(h4) 

it follows by a short calculation that 

fftL21(q) - f i r @ )  = h2kZt69-6(92 + 2pq t  + 2Et2)-5'2. 

Hence 

lim [(a,"'(q) - p, (q) ) / t ]  = h2k2q-6(2E)-5/2. 
r-rm 

This is in contrast to Iimr,,[(u,(9) - B,(q))/t] = 0, as shown in section 3. Further 

lim [~2,"~(9)  - p, (q) ]  = 0. 
E-rcx, 

Thus the Duhamel formula yields an approximation only if E is large, regardless of the 
values for f. Let us compare this with a rough estimate by a Taylor expansion. One has 

" 
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We now substitute ( 2 E r 2  + k / E ) ' l Z  for q and 2 E r ( 2 E r 2  + k / E ) - ' i z  for p .  and consider 
z as the initial value of t .  That is, r + 00 is equivalent to f --f CO. The powers 
of E and r in (16) decrease strictly monotonically with increasing powers of t .  From 
&(q) = &E(t - r )2  + k / E  it therefore follows by an easy calculation that 

That is, for this example a Taylor expansion yields a better all round approximation than 
the Duhamel formula. 

A.2. The potential q4/4  

Setting fr = 1 we have calculated Q ( t )  = cr,(q) and 4(t)  = ,!$(q) for energies E = ' I ,  
E = 10, and E = 100, all with initial values P(0) = p(0 )  = 0, Q ( 0 )  = q(0) = (4E)'I4 
with the Taylor expansion explained above. The order of these expansions was in all 
cases 12. The intervals [ t j , t j + l ) ,  to = 0,  0 < j < N ( E ) ,  were given a uniform 
'steplength' A t  = t j + ~  - tj (depending on E )  such that the relative deviation of energy, 
I A E ( t ) / E l ,  is below 0.5% at the first step. This is achieved with A t  = 0.4, A t  = 0 . 2  
and A t  = 0.12 for E . =  1 ,  E = IO and E = 100 respectively. The corresponding 
intervals of periodicity are T = 5.24, = 2.95 and T = 1.66, which means 13 steps 
in each case. The maximal absolute values of A Q ( t ) / Q o  = ( Q ( t )  - q ( t ) ) / Q ( O )  and 
A E ( t ) / E  ( P ( t ) 2 / 2  + Q ( t ) 4 / 4 ) / E  - 1 on the corresponding intervals of periodicity 
are given in table Al.  We have further listed the values of A Q ( T ) / Q o  to demonstrate 
that Q ( T )  is periodic in the same way that the classical position q( t )  is, namely modulo 
T = r ( 1 / 4 ) 2 ( 2 ~ ) - 1 / 2 ( E ) - 1 / 4  (cf a corresponding statement in section 2 ) t .  Calculations 
based on the Duhamel formula have been omitted. Compared with a Taylor expansion they 
are highly unsatisfactory as to efficiency and accuracy. 

Table A l .  

E I 10 100 
T 5.24 2.95 1.66 
IAQ(t)/Qnlmai 0.38% 0.0078% 0.0016% 
AQ(T)/Qo 0.067% 0.0013% O.OW6W 
IAE(t)lElm, 0.37% 0.0071% 0.0015% 

Referen- 

[I1 Moyal J E 1945 Proc. Comb. Phil. Soc. 45 99 
[2] Weyl H The Theory of Gmups and Qwntwn Mechanics (New York Dover) 
[3] Wigner E P 1932 Phys. Rev. 40 749 
[41 Berry M 1983 SemicLassical Mechnnicf. Les Houches Lectures, Session Xyxvl (Amsterdam: North-Holland) 
(51 Wemer R 1984 1. M u h .  Phys. 25 77-109 

t The calculation time (including plots For all Functions listed above) was. by the way, a b u t  7 min on an i486 
DX2/66 (8 MB RAM) PC with a program running under Mathematica for Wmdows, version 2.1. @Wolfram 
Research, Inc., 1992. 



4116 G Braunss and D Rompf 

Iansen A I E M 1985 J. Math. Phys. 26 1986-93 
Morgues G, Feix M R and Andrieux I C 1985 J. Moth. Phys. 26 25545 
Holland P R, Kypriandis A and Wgner 1 P 1986 Lett. Molh. Phys. 12 101-10 
Kim Y S and Zachiuy W W (eds) 1987 Th Physics of Phase Space (Lecture Notes in Physics 2781 (Berlin: 

Lip0 Wang 1986 J.  Moth. Phys. 27 48S7 
VMlly J C and Gracia-Bondfa J M 1987 J .  Malh. Phys. 28 2930-2 
Narcovich F 1987 J .  Muh.  Phys. 28 287342 
VWlly J C and Gracia-Bondla J M 1988 J. Marh. Phys. 29 88LL7 
VWlly J C. Gmcia-Bondla J M and Schempp W 1990 Acta Applicandae Marhmticae 11 225-50 
Fairlie D Band Manogue C A 1991 1. Phys. A: Math. Gen. 24 3807-15 
Kim Y S and Noz M E 1991 Phase Space Piclure of Quantum Mechonics (Singapore: World Scientific) 
Stawianowski J 1991 Geometry oft'hue Spaces (New York Wiley) 
Bayen F, malo M. Fmnsdd C, Lichnerowicz A and Stemheimer D 1978 Ann. Phys. 111 61-110. 111-151 
Gutt S 1983 Lett. Math. Phys. 7 249-58 
ANeson W 1983 C u m u n .  Moth. Phys. 89 77-109 
Ba.ml H, F l m  M. Lichnerawicr A and Stemheimer D 1984 Lett. Math. Phys. 8 483-94 
Basart H and Lichnerowicz A 1985 Len. Math. Phys. 10 167-77 
Binegar B 1986 Lei/. Malh. Phys. 12 301-8 
Hazewinkel M and Gentenhater M (eds) 1988 Deformation Theory of Algebras and Strrlures and 

Berger R 1989 Lell. Moth. Phys. 17 275-83 
Fletcher P 1990 Phys. Lett. 2486 323-7 
Fairlie D B and Nuyfs J 1990 Cummun. Math. Phys. 134 413-19 
Rieffel M A 1990 Pmc. Symposia in Pure hfathemalics vol 51, p I 
Gelfand I M and Fairlie D B 1981 Cumman. Moth. Phys. 136 487-99 
Zhicheng Lu 1991 J. Muh.  Phy,s. 33 2 
Kong Wan K and Sumner P J 1991 Nuoso Cimenlo B 106 6 
Emch G G 1984 Mothemoticol and Conceptual Foundations of 20th-Century Physics (Amsterdam: Nonh- 

Braunss G On the Regular Hilbert Space Representotion ofa Moyal Qudntiration to appear 
Braunss G 1975 Cummm. Murh. Phys. 45 159-65 
Thirring W 1977 Lehrbuch der Molhematischen Physik I :  Klossische Dynumische Syrteme (Berlin: Springer) 

Springer) 

Applicoriom (Noto Advanced Science Institute Series C: Mathemticol and Physical Sciences 247) 

Holland) 


